No BS Data Salon #2

On Saturday, our illustrious Chief Scientist Matt Curcio sat on the Frameworks, Tools, and Techniques for Scaling up Machine Learning panel at the second No BS Data Salon hosted by MetaMarkets. The discussion ranged from scaling the human aspect of ML and analytics to brass tacks about the difficulties of actually performing ML on web scale data sets.

The theme for this Salon was analytics, and just like last time the focus was on real use cases and a no-nonsense open discussion. We heard great presentations from Sean Gourley of Quid, Ian Wong of Square, and Metamarkets’ own Nelson Ray. Sean gave a great talk about the future of human-scale vs. machine-scale decision-making and analytics. Ian gave an informative overview of the challenges of growing a risk analysis team at Square. Nelson threw down with an awesome technical presentation about how to “A/B test anything”.

This second event in the series was certainly a worthwhile follow-up to the first! Thanks again to Metamarkets for the food, drink, and welcome. You won’t find better hosts than Mike and Nisha!

No BS Data Salon #2 attendees during Sean Gourley's PresentationNo BS Data Salon #2 attendees during Sean Gourley's PresentationNo BS Data Salon #2 attendees caffeinating in between presentations

Trackbacks

  1. [...] week, lots more notes, plenty coffee and the outline slowly became a reality. I presented an initial cut of the lecture to Mike Driscoll and some of the other Big Data experts from the likes of Twitter, [...]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 254 other followers

%d bloggers like this: